
SmallJS
Back to elegance

Website: small-js.org

by:
Richard Ronteltap

About the author

 My name is Richard Ronteltap
(Yes, that is a bit of a strange last name :)

 Live in Amsterdam, The Netherlands

 Studied Computer Science at the University of Amsterdam
where I met my wife (she insisted I say this :),
where I work as an IT department head.

 My CS thesis in '93 was on OO databases,
with a query optimizer written in Smalltalk-80.

 I also discovered: Smalltalk/V, Dolphin, Pharo, Amber...

What is SmallJS?

 Transpiler from Smalltalk to efficient, lightweight JavaScript.

 JS code runs in modern browsers and in Node.js.

 Smalltalk-80 language syntax support

 Class and method names left like familiar JS.

 Source file based (not image based).

 Development in Visual Studio Code IDE

 With syntax coloring and step debugging!

 Built-in unit-testing and GUI-testing (browser).

 Playground available (local or on small-js.org).

 Completely free and open source.

Why make SmallJS?

 Develop modern apps in ST, specifically web apps,
using the same language for the front-end and the back-end.

 Promote the elegant Smalltalk language
specifically to JS, TS, PHP, and Python devs,
who don't know what they're missing... :)

 Looked at: Amber Smalltalk, PharoJS, Seaside
But though it could be more JS native and integrated.
With a few trade-offs.

 And a separate IDE and a modular image don't seem so bad...

How does it look?

Playground
(live demo possible)

Note:
It's not an IDE in your browser,
because VSCode is much nicer
and compiling is lightning quick :)

SmallJS library - Core

 Basic ST classes you'd expect.

 Full ST magnitude (number) hierarchy.

 With also: BigInt, Fraction, Date, Point(3D), Rect.

 Events, streams, fetch.

 Async & await.

 Unit test framework

 That auto-finds new test classes and methods.

SmallJS library - Browser

 HTML base classes like: Document, Window, Location.

 All common HTML elements.

 CSS styles and rules.

 Full Canvas 2D support for drawing.

 Lightweight HTML component system
to easily create SPAs.

 Desktop app support using Electron or NodeGui !

 Example apps to get you started quickly.

SmallJS library - Node.js

 HTTP server, ExpressJS.

 Worker threads, File.

 Databases: SQLite, Postgres, MariaDB, MySQL .

 With an ORM for easy CRUD operations on objects.

 AI: Ollama, OpenAI, Deepseek, Google AI, Anthropic.

 With shared classes for browser clients.

 Example apps to get you started quickly.

Why use SmallJS?

 The Smalltalk language syntax fits on a postcard

 Objects all the way down

 Customizable on every level.
Need to add a complex number type? Easy.

 Well defined behaviors, compared to JS.

 Integers are really integers. Controlled type conversions.

 Uses familiar JS names and functionality

 Seamless integration of ST with JS/TS and HTML/CSS.

Smalltalk's syntax fits on a postcard

Code:

squared
^ self * self.

Call with > result:

10 squared > 100

1.5 squared > 2.25

(1 / 3) squared > (1 / 9)

99999999 squared > right answer, BigInt

‘s’ squared > error, stops

> Number is a base class for Integer, Float,
Fraction and BigInt, but not String.

Code:

NumUtil.squared(n)
{ return n * n; }

Call with > result:

NumUtil.squared(10) > 100

NumUtil.squared(1.5) > 2.25

NumUtil.squared(1 / 3) > 0.1111111111111

NumUtil.squared(99999999) > wrong answer, float

NumUtil.squared(‘s’) > NaN, continues

> No (safe) integers, no fractions, BigInt not integrated,
error prone type coercion.

Code example ST vs JS
SmallJS JavaScript

But what about new JS/TS features?

ST solutionJS feature

Don't use state vars.
Use array iterators for list processing.

functional programming

Abstract base classinterface

Class with only gettersrecord, tuple, immutable

Pass anonymous function (block)decorator

Class methodstatic

No getter methodprivate

Arrayvariable argument list

Extra 1-line methodoptional argument

Automaticimport / export

Implemented, unfortunately.async / await

Add type hints like Python? (todo...)type checking

The philosophy is that
retaining simplicity
is worth some extra lines of
encapsulated code.

Traditional Smalltalks vs SmallJS
(E.g.: Pharo, Dolphin, Cincom, Squeak)

 File-based (not image-based)
 Easy source control in clear hierarchy. IDE safely separate from code.

 Modular class loading iso unsafe image stripping.

 Can use rich and familiar IDE (VSCode).

 Focus on your project files, that are separated from the library (image).

 Run anywhere
 One language for front-end and back-end apps in all browsers and Node.js.

So also runs on mobile devices.

 Integrates smoothly with the rich JS ecosystem
 Typically 1 line of interfacing code per encapsulated JS method.

 ST can call JS and vice versa.

 Newly available JS features and libraries can be integrated quickly.

SmallJS / ST trade-offs

 ST is dynamically typed

 An IDE enhancement cloud help here.

 And optional typing like TS is an idea...

 Debugging integrated with JS

 Would making a VSCode Language Server be worth it?

 Now you can easily see what's really going on..

 Tiny community, currently... :-)

SmallJS summary

 Elegant and safe Smalltalk language!

 Integrates tightly with JS in browser and Node.js.

 Familiar JS class and method names in both.

 Use it with your favorite IDE.

 Incremental use possible, mix and match with JS/TS.

Examples - basic
With live demo's & code inspection

NotesApp

Standard minimal example web app.Counter

Todo list web app with CRUD operations, sorting and
multi-language support.

Todo

Colorful bouncing balls, using the HTML Canvas 2D
API, which is fully supported.

Balls

Basic web shop front-ends, traditional and as SPA
and back-end, with database support on SQL ORM
mapper.

Shop

Examples - advanced
With live demo's & code inspection

NotesApp

Number crunching in SmallJS for primes, Fibonacci, Pi.Benchmark

True multithreading using the Web Workers API.
(Node 'worker threads' are also supported)

WebWorkers

Platform independent desktop apps,
when you don't care about memory and complexity :)

Electron

Platform independent desktops apps,
when you do care about memory usage and simplicity.

NodeGui (QT)

SmallJS web client with Pharo web server using Zinc,
so quite standard on both sides.

Pharo

Any questions?

Website: small-js.org

